Skip to main content
SpP-Brand-Header-yellow
Ryton® PPS

Properties

The Ryton® PPS Family

The highly stable chemical bonds of Poly(p-phenylene sulfide) (PPS)  molecular structure impart a remarkable degree of molecular stability toward both thermal degradation and chemical reactivity. 

PPS is a semi-crystalline polymer with a high crystalline melting point of about 285°C (545°F). Because of its molecular structure, PPS also tends to char during combustion, making the material inherently flame retardant.

Discover all Ryton® PPS grades

 

Distinctive Properties

Ryton® PPS (polyphenylene sulfide) compounds offer a unique combination of properties and a cost/performance balance unmatched by other engineering thermoplastics.

Thermal stability

Ryton® PPS has a very high-temperature capability, with a long-term range above 200°C (392°F) and short-term resistance to temperatures up to 260°C (500° F). As shown in the table below, UL thermal indices for Ryton® PPS go up to 240 °C (464 °F).

Ryton-pps-properties-thermal-stability

 

Dimensional stability

Even complex parts can be molded with very tight tolerances and will maintain dimensional stability even at elevated temperatures and  in harsh chemical environments.

Chemical resistance

Ryton® PPS offers excellent resistance to a broad spectrum of chemicals and has no known organic solvent under 200 °C (392 °F). This allows the material to thrive in highly corrosive environments, including all automotive and electronic processing fluids.

Ryton-pps-properties-chemical-resistance

 

Non-Flammability

Ryton® PPS compounds are inherently flame resistant. Most Ryton® PPS compounds have UL 94 V-0 and many have UL 94 5VA non-flammability ratings without using flame retardant additives. The limiting oxygen index of Ryton® PPS compounds is about 50%, making them among the most flame-resistant plastics.

When comparing flammability ratings of engineering plastics, it is important to note that many require flame retardant additives to be classified UL 94 V-0.

Ryton-pps-properties-non-flammability

 

Inherent flame retardancy

Most Ryton® PPS compounds have UL94 V-0 flammability ratings without flame retardant additives.

Chemical Properties

The chemical resistance of Ryton® PPS is well known to be outstanding, even at elevated temperatures. However, being an organic polymer, PPS can be affected by some chemicals under certain conditions.

Over the years, we have accumulated a large database on exposure of Ryton® PPS to a wide variety of chemicals. Although it is not possible to test every chemical, we have seen that chemicals having similar structures and/or properties tend to have similar effects on Ryton® PPS compounds. 

If you require further information, our technical experts can provide opinions about the compatibility of Ryton® PPS compounds or Ryton® PPS Alloy compounds with particular chemical environments.

An extensive alphabetical list of chemicals with our best general recommendations regarding their compatibility with Ryton® PPS compounds.

Chart Legend

The chart below provides an alphabetical list of chemicals along with our best general recommendations regarding their compatibility with Ryton® PPS compounds. The type face in which the chemical name is printed indicates the extent of available test data:

  • [1]: extensive, long-term test data
  • [2]: We have no actual test data, our recommendations are based on compatibility similar chemicals
  • All others: We have limited, short-term test data


Chemical compatibility is expressed in four general classifications:

  • Acceptable: suitable for extensive exposure even at elevated temperatures
  • Questionable at Elevated Temperatures: caution against extensive exposure to these chemicals at temperatures above 65°C (150°F)
  • Avoid Use of Mineral Filled Grades: acidic chemicals are likely to dissolve common mineral fillers
  • Avoid Exposure: not recommended to use in service with these chemicals except under the limitations cited

 

Chemical Compatibility Chart

ChemicalRecommendation
Acetaldehyde [2]Acceptable
Acetic Acid, 10%Acceptable
Acetic Acid, 100% (Glacial)Acceptable
Acetic AnhydrideAcceptable
Acetone [2]Acceptable
AcetonitrileAcceptable
AcetophenoneQuestionable at Elevated Temperatures
Acetyl ChlorideQuestionable at Elevated Temperatures
Acetylene [2]Acceptable
Acid Mine Water [2]Acceptable
Acrylic Acid [2]Acceptable
Aluminum ChlorideAcceptable
Aluminum SulfateAcceptable
2-AminoethanolQuestionable at Elevated Temperatures
Ammonia, anhydrous [2]Questionable at Elevated Temperatures
Ammonium ChlorideAcceptable
Ammonium HydroxideAcceptable
Ammonium NitrateAcceptable
Ammonium SulfateAcceptable
Amyl AcetateAcceptable
Amyl AlcoholAcceptable
Antifreeze [1]Acceptable
Aniline [1]Questionable at Elevated Temperatures
Aqua RegiaAvoid Exposure
Asphalt Emulsions [2]Acceptable
Barium ChlorideAcceptable
Barium Hydroxide [2]Acceptable
Barium Sulfate [2]Acceptable
Benzaldehyde [1]Questionable at Elevated Temperatures
Benzene [2]Questionable at Elevated Temperatures
Benzene Sulfonic AcidQuestionable at Elevated Temperatures
Benzoic Acid [2]Questionable at Elevated Temperatures
Benzonitrile [1]Questionable at Elevated Temperatures
Benzoyl Chloride [2]Questionable at Elevated Temperatures
Benzyl ChlorideQuestionable at Elevated Temperatures
Black Liquor (from pulpwood) [2]Acceptable
BoraxAcceptable
Brake Fluid [1]Acceptable
Bromine [1]Avoid Extensive Exposure above 0.1%
Butadiene [2]Acceptable
Butane [2]Acceptable
2-Butanone (Methyl Ethyl Ketone) [1]Acceptable
Butyl AcetateAcceptable
n-Butyl Alcohol [1]Acceptable
Butyl Ether [1]Acceptable
Butyl PhthalateQuestionable at Elevated Temperatures
Butylamine [1]Questionable at Elevated Temperatures
Butylene [2]Acceptable
Calcium ChlorideAcceptable
Calcium NitrateAcceptable
Calcium Sulfate [2]Acceptable
Carbon DioxideAcceptable
Carbon Disulfide [2]Acceptable
Carbon Tetrachloride [1]Questionable at Elevated Temperatures
Carbonated Water [2]Acceptable
Carbonic Acid [2]Acceptable
CellosolveAcceptable
Chlorine [1]Avoid Extensive Exposure above 0.1%
ChlorobenzeneQuestionable at Elevated Temperatures
2-ChloroethanolQuestionable at Elevated Temperatures
Chloroform [1]Questionable at Elevated Temperatures
Chlorophenol, 5% AqueousAcceptable
Chlorosulfonic AcidAvoid Extensive Exposure
Chromic AcidAvoid Extensive Exposure
Clorox (5.25% Sodium Hypochlorite) [1]Acceptable
Copper ChlorideAcceptable
Copper Sulfate [2]Acceptable
Cottonseed Oil [2]Acceptable
m-CresolQuestionable at Elevated Temperatures
Cresyl Diphenyl Phosphate [1] 
Crude Oil (aromatic) [1]Acceptable
CyclohexaneAcceptable
Cyclohexanol [1]Acceptable
CyclohexanoneAcceptable
Detergents [2]Acceptable
1,2- Dichloroethane [1]Questionable at Elevated Temperatures
DichloromethaneQuestionable at Elevated Temperatures
Diesel Fuel [1]Acceptable
Diethanolamine, 25% [1]Questionable at Elevated Temperatures
Diethyl Ether [2]Acceptable
DiisobutyleneAcceptable
Dimethyl PhthalateQuestionable at Elevated Temperatures
Dimethyl SulfoxideAcceptable
DimethylanilineQuestionable at Elevated Temperatures
N,N-DimethylformamideAcceptable
Dioctyl PhthalateQuestionable at Elevated Temperatures
p-Dioxane [1]Acceptable
Diphenyl Ether [2]Questionable at Elevated Temperatures
Dowtherm [1]Acceptable
Engine Oil [1]Acceptable
EpichlorohydrinQuestionable at Elevated Temperatures
Ethane [2]Acceptable
EthanolamineQuestionable at Elevated Temperatures
2-EthoxyethanolAcceptable
Ethyl Acetate [1]Acceptable
Ethyl Alcohol (Ethanol) [1]Acceptable
Ethyl Chloride [2]Questionable at Elevated Temperatures
Ethyl Ether [2]Acceptable
Ethyl Mercaptan [2]Acceptable
Ethylene [2]Acceptable
Ethylene ChlorideQuestionable at Elevated Temperatures
Ethylene ChlorohydrinQuestionable at Elevated Temperatures
Ethylene DichlorideQuestionable at Elevated Temperatures
Ethylene Glycol [1]Acceptable
Ethylene Glycol MonoethyletherAcceptable
EthylenediamineQuestionable at Elevated Temperatures
Ferric ChlorideAcceptable
Ferrous Chloride [2]Acceptable
Fluorosilicic Acid, 25%Acceptable
FormaldehydeAcceptable
Formic AcidAcceptable
Freon [1]Questionable at Elevated Temperatures
Fuel Oil [2]Acceptable
FuranAcceptable
FurfuralAcceptable
Gasohol (Gasoline/Alcohol)Acceptable
Gasoline [1]Acceptable
Glycolic AcidAcceptable
HeptaneAcceptable
Hexane [2]Acceptable
Hexene [2]Acceptable
HFC-134aQuestionable at Elevated Temperatures
Hydraulic Fluid, Aircraft [1]Acceptable
Hydrazine [2]Questionable at Elevated Temperatures
Hydrobromic Acid [2]Avoid Extensive Exposure above 0.1%
Hydrochloric Acid [1]Avoid Extensive Exposure above 0.1%
Hydrofluoric AcidAvoid Extensive Exposure above 0.1%
Hydrogen Gas [2]Acceptable
Hydrogen Peroxide [2]Avoid Extensive Exposure above 5%
Hydrogen SulfideAcceptable
Iodine [2]Avoid Extensive Exposure above 0.1%
Isopropyl AlcoholAcceptable
Isopropyl Mercaptan [2]Acceptable
Jet FuelAcceptable
KeroseneAcceptable
Lactic AcidAcceptable
Liquefied Petroleum Gas (LPG) [2]Acceptable
Lithium Bromide [2]Acceptable
Lubricating Oil [2]Acceptable
Magnesium ChlorideAcceptable
Magnesium Hydroxide [2]Acceptable
Methane [2]Acceptable
Methoxy Propanol [1]Acceptable
Methyl Acrylate [2]Acceptable
Methyl Alcohol (Methanol) [1]Acceptable
Methyl Ethyl Ketone [1]Acceptable
Methyl Isobutyl KetoneAcceptable
Methyl Mercaptan [2]Acceptable
Methyl Methacrylate [2]Acceptable
Methyl tert-Butyl Ether (MTBE)Acceptable
Methylene ChlorideQuestionable at Elevated Temperatures
N-Methylpyrrolidinone [1]Questionable at Elevated Temperatures
Mineral OilAcceptable
MorpholineQuestionable at Elevated Temperatures
Motor Oil [1]Acceptable
Naphtha [2]Acceptable
Naphthalene [2]Questionable at Elevated Temperatures
Nitric Acid [1]Avoid Extensive Exposure above 0.1%
Nitrobenzene [1]Questionable at Elevated Temperatures
NitrogenAcceptable
Nitrogen Tetroxide [2]Avoid Extensive Exposure above 0.1%
NitromethaneQuestionable at Elevated Temperatures
Ozone [1]Avoid Extensive Exposure above 100 ppm
Perchloroethylene [2]Questionable at Elevated Temperatures
Peroxyacetic Acid [2]Avoid Extensive Exposure above 1%
Peroxybenzoic Acid [2]Avoid Extensive Exposure above 1%
Phenol [1]Questionable at Elevated Temperatures
Phosphoric Acid [1]Avoid Use of Mineral Filled Grades
Phosphorus TrichlorideAcceptable
Potassium Chloride [2]Acceptable
Potassium DichromateAvoid Extensive Exposure above 0.1%
Potassium Hydroxide [2]Acceptable
Potassium PermanganateAvoid Extensive Exposure above 0.1%
Propane [2]Acceptable
Propyl Mercaptan [2]Acceptable
Propylene [2]Acceptable
Propylene Chlorohydrin [2]Questionable at Elevated Temperatures
Propylene Glycol Monomethylether [1]Acceptable
PyridineQuestionable at Elevated Temperatures
Rapeseed (Rape) Oil [2]Acceptable
Rape Oil Methyl Ester [2]Acceptable
Refrigerant R-22 [1]Questionable at Elevated Temperatures
Sodium AcetateAcceptable
Sodium BicarbonateAcceptable
Sodium BisulfateAcceptable
Sodium CarbonateAcceptable
Sodium ChlorideAcceptable
Sodium Cyanide [2]Acceptable
Sodium DichromateAvoid Extensive Exposure above 0.1%
Sodium Hydrosulfite [2]Acceptable
Sodium Hydroxide [1]Acceptable
Sodium Hypochlorite [1]Avoid Extensive Exposure above 5%
Sodium NitrateAcceptable
Sodium SulfateAcceptable
Sodium SulfideAcceptable
Sodium ThiosulfateAcceptable
SteamAcceptable
Stoddard SolventAcceptable
SulfolaneAcceptable
Sulfur Dioxide [2]Acceptable
Sulfuric Acid [1]Avoid Use of Mineral Filled Grades
TetrahydrofuranAcceptable
Thiophenol [2]Questionable at Elevated Temperatures
Toluene [1]Questionable at Elevated Temperatures
Tomato JuiceAcceptable
Transmission Fluid [1]Acceptable
Trichloroacetic AcidQuestionable at Elevated Temperatures
1,1,1-TrichloroethaneQuestionable at Elevated Temperatures
TrichloroethyleneQuestionable at Elevated Temperatures
TrichlorotrifluoroethaneQuestionable at Elevated Temperatures
Triethyl PhosphateAcceptable
TriethylamineQuestionable at Elevated Temperatures
Triphenyl PhosphiteQuestionable at Elevated Temperatures
Trisodium PhosphateAcceptable
TurpentineAcceptable
Vegetable OilAcceptable
VinegarAcceptable
WaterAcceptable
Water: Salt Water, Sea Water, Tap WaterAcceptable
XyleneQuestionable at Elevated Temperatures
Zinc Chloride [1]Acceptable

Most water-based solutions of acids, bases, or neutral salts have no different effect on Ryton® PPS compounds than water alone. The primary exceptions are strong oxidizing acids, such as nitric acid, hydrochloric acid, or peroxy acids (see Oxidizing Chemicals). Relatively non-oxidizing acids, such as sulfuric acid and phosphoric acid, have little effect on PPS except under very severe conditions, such as high concentration and temperature.

Strong bases, such as concentrated sodium hydroxide or potassium hydroxide solutions, do not degrade PPS. Acids and bases tend to enhance and accelerate hydrolytic attack of polymer-reinforcement interfaces (see Hot Water), but the ultimate reduction in performance is typically not much worse than what occurs in water alone. We generally do not recommend use of compounds containing mineral fillers in service with strong acids (pH < 2) because of the susceptibility of some mineral fillers to acid digestion.

 

Effects of 50% Aqueous Zinc Chloride on Ryton® PPS Compounds   
Ryton® PPS Compound 
Exposure Conditions
Tensile 
Strength 
Retained
Weight 
Change
Transverse 
Swell
R-4-200BL   
 200 hours, 185°F (85°C)101%+ 0.1 %+ 0.1 %
BR111BL   
 200 hours, 185°F (85°C)97%0.0 %0.0 %

 

Effects of Strong Acids and Strong Bases on Ryton® R-4 PPS   
Chemical 
Exposure Conditions
Tensile 
Strength 
Retained
Weight 
Change
Transverse 
Swell
37% Hydrochloric Acid   
 24 hours, 200°F (93°C)61%+ 1.5 % 
 3 months, 200°F (93°C)35%- 10.2 % 
 12 months, 200°F (93°C)27%- 0.7 % 
10% Nitric Acid   
 24 hours, 200°F (93°C)91%0.0 % 
 3 months, 200°F (93°C)0%----- 
85% Phosphoric Acid   
 24 hours, 200°F (93°C)100%0.0 % 
 3 months, 200°F (93°C)99%- 0.3 % 
 12 months, 200°F (93°C)89%- 7.2 % 
30% Sulfuric Acid   
 24 hours, 200°F (93°C)94%+ 1.3 % 
 3 months, 200°F (93°C)89%+ 1.3 % 
 12 months, 200°F (93°C)61%+ 3.1 % 
50% Sulfuric Acid   
 1 week, 200°F (93°C)80% + 1.8 %
 16 weeks, 200°F (93°C)69% + 0.8 %
 52 weeks, 200°F (93°C)73% + 1.6 %
80% Sulfuric Acid   
 1 week, 200°F (93°C)85% + 1.5 %
 16 weeks, 200°F (93°C)85% + 0.6 %
 52 weeks, 200°F (93°C)46% + 2.1 %
30% Sodium Hydroxide   
 24 hours, 200°F (93°C)100%+ 0.1 % 
 3 months, 200°F (93°C)89%+ 10.5% 
 12 months, 200°F (93°C)63%+ 13.0 % 

Extensive test data demonstrates that Ryton® PPS compounds, regardless of the filler and/or additives used, are virtually impervious to all common automotive fuels (including alcohol-containing flex fuels), lubricating oils, transmission fluids, brake fluids, and other hydraulic fluids. Although differences in fillers and additives can affect resistance to engine coolants, Ryton® PPS compounds are generally very resistant to glycol-based and silicone containing coolants, even at elevated temperatures.

Ryton® R-4-220NA is specially formulated for enhanced resistance to the detrimental effects of water at elevated temperatures (see Hot Water), and therefore tends to retain a greater degree of mechanical strength over long-term exposure to high temperature engine coolants, especially the more aggressive "OAT" and "hybrid" type “long-life” engine coolants.

Hot water can have a negative impact on the mechanical properties of glass-fiber reinforced grades. Ryton® PPS polymer is not hydrolyzed by hot water and Ryton® R-4-220NA PPS, Ryton® R-4-220BL PPS and Ryton® R-7-220BL PPS have been specially formulated for enhanced resistance to hot water. 

Effects of Hot Water on Ryton® PPS Compounds   
Ryton® PPS Compound 
Exposure Conditions
Tensile 
Strength 
Retained
Weight 
Change
Transverse 
Swell
Unfilled PPS   
3 months, 200°F (93°C)100%+ 1.9 % 
6 months, 200°F (93°C)94%+ 1.8 % 
12 months, 200°F (93°C)91%+ 2.0 % 
1 week, 300°F (149°C)95%  
4 weeks, 300°F (149°C)91%  
10 days, 350°F (177°C)97%  
R-4   
48 weeks, 171°F (77°C)76%+ 0.4 % 
48 weeks, 185°F (85°C)59%+ 0.5 % 
48 weeks, 199°F (93°C)52%+ 0.6 % 
1 week, 284°F (140°C)51%+ 0.2 %+ 0.2 %
4 weeks, 284°F (140°C)44%+ 0.3 %+ 0.0 %
16 weeks, 284°F (140°C)46%+ 0.4 %+ 0.4 %
R-4XT   
1 week, 284°F (140°C)77%+ 0.2 %+ 0.0 %
4 weeks, 284°F (140°C)64%+ 0.2 %+ 0.2 %
16 weeks, 284°F (140°C)52%+ 0.3 %+ 0.2 %
R-4-220NA   
1 week, 284°F (140°C)97%+ 0.1 %+ 0.1 %
4 weeks, 284°F (140°C)86%+ 0.2 %+ 0.0 %
16 weeks, 284°F (140°C)81%+ 0.2 %+ 0.2 %
BR111   
1 week, 284°F (140°C)74%+ 0.2 %+ 0.2 %
4 weeks, 284°F (140°C)59%+ 0.2 %+ 0.2 %
16 weeks, 284°F (140°C)52%+ 0.3 %+ 0.2 %
R-7-220BL   
500 hours, 284°F (140°C)80%+ 0.9 % 
1000 hours, 284°F (140°C)75%+ 0.9 % 
2000 hours, 284°F (140°C)73%+ 0.9 % 

Non-oxidizing organic chemicals generally have little effect on Ryton® PPS compounds, but amines, aromatic compounds, and halogenated compounds may cause some swelling and softening over extended periods of time at elevated temperatures. Ryton® PPS is practically unaffected by many organic chemicals, even under conditions that will dissolve or destroy other plastics, however some classes of organic chemicals can compromise the PPS polymer matrix. Non-aromatic, non-halogenated alcohols, aldehydes, alkanes, alkenes, esters, ethers, and ketones are all generally suitable for service with Ryton® PPS compounds, even at elevated temperatures.

 

Effects of Organic Chemicals on Ryton® R-4 PPS Compounds   
Chemical 
Exposure Conditions
Tensile 
Strength 
Retained
Weight 
Change
Transverse 
Swell
Aniline   
24 hours, 200°F (93°C)100%+ 1.0 % 
3 months, 200°F (93°C)86%+ 5.1 % 
12 months, 200°F (93°C)42%+ 5.7 % 
Benzaldehyde   
24 hours, 200°F (93°C)97%+ 1.5 % 
3 months, 200°F (93°C)47%+ 5.7 % 
12 months, 200°F (93°C)42%+ 6.5 % 
Benzonitrile   
24 hours, 200°F (93°C)100%+ 0.7 % 
3 months, 200°F (93°C)79%+ 4.1 % 
12 months, 200°F (93°C)39%+ 5.5 % 
n-Butyl Alcohol   
24 hours, 200°F (93°C)100%0.0 % 
3 months, 200°F (93°C)92%+ 0.1 % 
12 months, 200°F (93°C)80%0.0 % 
Butyl Ether   
24 hours, 200°F (93°C)100%0.0 % 
3 months, 200°F (93°C)89%+ 0.7 % 
12 months, 200°F (93°C)79%+ 0.8 % 
Butylamine   
24 hours, 200°F (93°C)96%+ 0.8 % 
3 months, 200°F (93°C)46%+ 3.5 % 
Carbon Tetrachloride   
24 hours, 200°F (93°C)100%+ 1.0 % 
3 months, 200°F (93°C)48%+ 6.5 % 
12 months, 200°F (93°C)25%+ 9.9 % 
Chloroform   
24 hours, 200°F (93°C)81%+ 4.0 % 
3 months, 200°F (93°C)77%+ 9.0 % 
12 months, 200°F (93°C)43%+ 3.9 % 
Cresyl Diphenyl Phosphate   
24 hours, 200°F (93°C)100%+ 0.1 % 
3 months, 200°F (93°C)100%+ 2.2 % 
12 months, 200°F (93°C)95%+ 0.5 % 
Crude Oil (aromatic)   
4 weeks, 200°F (93°C)101%  
16 weeks, 200°F (93°C)98%  
52 weeks, 200°F (93°C)100%  
Cyclohexanol   
24 hours, 200°F (93°C)100%0.0 % 
3 months, 200°F (93°C)91%+ 0.2 % 
12 months, 200°F (93°C)86%+ 0.1 % 
1,2-Dichloroethane   
2 weeks, 200°F (93°C)108%+ 4.2 %+ 2.5 %
8 weeks, 200°F (93°C)96%+ 4.5 %+ 2.8 %
24 weeks, 200°F (93°C)104%+ 4.3 %+ 2.3 %
Diesel Fuel   
8 weeks, 200°F (93°C)100%  
28 weeks, 200°F (93°C)94%  
52 weeks, 200°F (93°C)99%  
25% Diethanolamine   
1 week, 212°F (100°C)100%  
4 weeks, 212°F (100°C)95%  
p-Dioxane   
24 hours, 200°F (93°C)99%+ 1.4 % 
3 months, 200°F (93°C)96%+ 5.2 % 
12 months, 200°F (93°C)82%  
Ethyl Acetate   
2 weeks, 200°F (93°C)114%+ 0.8 %+ 0.8 %
8 weeks, 200°F (93°C)111%+ 1.9 %+ 1.3 %
24 weeks, 200°F (93°C)114%+ 2.0 %+ 1.2 %
Ethyl Alcohol   
2 weeks, 200°F (93°C)100%+ 0.1 %- 0.8 %
8 weeks, 200°F (93°C)102%+ 0.6 %+ 0.7 %
24 weeks, 200°F (93°C)100%+ 0.9 %+ 0.8 %
Freon 113 / 10% Oil   
4 weeks, 100°F (38°C)101%+ 0.1 % 
12 weeks, 100°F (38°C)98%0.0 % 
24 weeks, 100°F (38°C)103%0.0 % 
Hydraulic Fluid, Aircraft   
24 hours, 200°F (93°C)100%+ 0.03 % 
1 weeks, 140°F 60°C)95%+ 0.02 % 
3 months, 140°F (60°C)99%- 0.02 % 
Methyl Ethyl Ketone   
2 weeks, 200°F (93°C)115%+ 1.1 %+ 1.0 %
8 weeks, 200°F (93°C)112%+ 1.9 %+ 1.7 %
24 weeks, 200°F (93°C)115%+ 1.9 %+ 1.6 %
N-Methylpyrrolidinone   
24 hours, 200°F (93°C)100%+ 1.5 % 
3 months, 200°F (93°C)92%+ 5.7 % 
12 months, 200°F (93°C)80%+ 5.0 % 
Nitrobenzene   
24 hours, 200°F (93°C)100%+ 1.3 % 
3 months, 200°F (93°C)63%+ 6.6 % 
12 months, 200°F (93°C)31%+ 7.3 % 
Phenol   
24 hours, 200°F (93°C)100%+ 0.5 % 
3 months, 200°F (93°C)92%+ 2.3 % 
12 months, 200°F (93°C)63%+ 3.1 % 
Refrigerant R-22   
4 weeks, 165°F (74°C)108%  
8 weeks, 165°F (74°C)107%  
12 weeks, 165°F (74°C)121%  
Toluene   
24 hours, 200°F (93°C)100%+ 1.1 % 
3 months, 200°F (93°C)70 %+ 4.9 % 
12 months, 200°F (93°C)41%+ 4.9 % 

Avoid exposure of Ryton® PPS compounds or Ryton® PPS Alloy compounds to these chemicals except at low concentrations or for very brief periods.

Listed below are some of the strong oxidizing agents and oxidizing acids known or expected to attack and degrade polyphenylene sulfide. We generally do not recommend using Ryton® PPS in extensive service with these chemicals. However, service in the presence of many of these chemicals under relatively mild conditions may be acceptable. For example, Ryton® PPS can withstand common disinfectant solutions that contain low concentrations of some these chemicals (such as hydrogen peroxide, sodium hypochlorite, or chlorine). Tests and field service experience have also shown that Ryton® PPS can withstand the small quantities of nitric acid and other acids present in flue gases.

 Nitric Acid 
Chromic Acid 
Chlorosulfonic Acid 
Sodium Hypochlorite 
Hydrogen Peroxide 
Potassium Permanganate 
Potassium Bichromate 
Sodium Bichromate 
Ozone
Hydrochloric Acid 
Hydrobromic Acid 
Hydrofluoric Acid 
Chlorine 
Bromine 
Iodine 
Nitrogen Tetroxide 
Peroxyacetic Acid 
Peroxybenzoic Acid
 

 

Effects of Oxidizing Chemicals on Ryton® R-4 PPS  
Chemical 
Exposure Conditions
Tensile 
Strength 
Retained
Weight 
Change
37% Hydrochloric Acid  
24 hours, 200°F (93°C)61%+1.5%
3 months, 200°F (93°C)35%-10.2%
12 months, 200°F (93°C)27%-0.7%
10% Nitric Acid  
24 hours, 200°F (93°C)91%0.0%
3 months, 200°F (93°C)0%----
Ozone, 1.35 ppm  
4 weeks, 208°F (98°C)93% 
5.25% Sodium Hypochlorite  
24 hours, 200°F (93°C)94%-1.2%
3 months, 200°F (93°C)77%+0.4%
12 months, 200°F (93°C)61%+0.3%
Chemical 
Exposure Conditions
Flexural 
Strength 
Retained
Weight 
Change
1.5% Bromine  
1 month, 180°F (82°C)75% 
2 months, 180°F (82°C)60%-3.1%
3.3% Bromine  
1 month, 73°F (23°C)62% 
3 months, 73°F (23°C)36%-0.8%
0.26% Chlorine  
1 month, 180°F (82°C)85% 
3 months, 180°F (82°C)78%-1.5%
0.7% Chlorine  
1 month, 73°F (23°C)97% 
3 months, 73°F (23°C)99%+1.4%

Ryton® PPS can withstand both gamma and neutron radiation exposure.

Ryton® PPS compounds are used in many nuclear installation applications because they can withstand both gamma and neutron radiation. The data tabulated below shows that 40% glass fiber reinforced PPS (Ryton® R-4 PPS) and glass and mineral filled PPS (Ryton® R-10 PPS) compounds exhibited no significant deterioration of mechanical properties after relatively high exposures to gamma and neutron radiation. Other 40% glass fiber reinforced PPS or glass and mineral filled PPS compounds would be expected to show similar resistance to degradation by radiation exposure.

 

Effects of Radiation Exposure on Ryton® PPS Compounds

Gamma Radiation   
Ryton® PPS Compound 
Exposure Conditions
Tensile 
Strength 
Retained
Flexural 
Strength 
Retained
Flexural 
Modulus 
Retained
R-4   
5 x 108 rads at 30°C (86°F)-----103%95%
1 x 109 rads at 30°C (86°F)-----105%97%
5 x 109 rads at 30°C (86°F)-----99%96%
3 x 108 rads at 50-55°C (122-131°F)100%93%102%
R-10 5002C   
3 x 108 rads at 50-55°C (122-131°F)97%99%103%
R-10 7006A   
3 x 108 rads at 50-55°C (122-131°F)102%99%101%
Neutron Radiation   
Ryton® PPS Compound 
Exposure Conditions
Tensile 
Strength 
Retained
Flexural 
Strength 
Retained
Flexural 
Modulus 
Retained
R-4   
5 x 108 rads at 30°C (86°F)-----101%100%
1 x 109 rads at 30°C (86°F)-----101%99%
4 x 108 rads at 50-55°C (122-131°F)90%86%102%
R-10 5002C   
4 x 108 rads at 50-55°C (122-131°F)84%94%100%
R-10 7006A   
4 x 108 rads at 50-55°C (122-131°F)87%95%97%

Ryton® PPS compounds and Ryton® PPS Alloy compounds are highly resistant to thermal oxidative degradation at elevated temperatures.

Ryton® PPS compounds exhibit exceptional resistance to thermal oxidative degradation during long-term exposure to elevated temperatures. Ryton® PPS Alloy compounds also exhibit excellent performance in this regard. The data tabulated below shows the excellent property retention of Ryton® PPS compounds and Ryton® PPS Alloy compounds after thermal aging in air at various temperatures. In these studies, test specimens were aged in forced draft ovens, and samples were removed periodically and tested for tensile strength, modulus (tensile or flexural) and impact strength (unnotched izod or unnotched charpy impact). Under its Component Recognition Program, Underwriters Laboratories (UL) also maintains documentation of studies of the long-term thermal endurance of Ryton® PPS compounds, and UL has established relative thermal indices (RTIs) of 200°C to 240°C (392°F to 464°F) for almost all Ryton® PPS compounds (see UL Yellow Card Listings).

Effects of Thermal Aging on Ryton® PPS Compounds and Ryton® PPS Alloy Compounds

Thermal Aging at 150°C   
Ryton® PPS Compound 
Hours at 302°F (150°C)
Tensile 
Strength 
Retained
Flexural 
Modulus 
Retained
Impact 
Strength 
Retained
XE5030BL   
500 hours79%96%97%
3000 hours100%101%93%
5000 hours101%101%92%
XE4050BL   
500 hours86%100%104%
3000 hours105%103%98%
5000 hours99%102%85%
Thermal Aging at 165°C   
Ryton® PPS Compound 
Hours at 329°F (165°C)
Tensile 
Strength 
Retained
Flexural 
Modulus 
Retained
Impact 
Strength 
Retained
R-4-200BL   
500 hours100%99%94%
1000 hours96%98%77%
2000 hours97%100%82%
BR111BL   
500 hours105%99%91%
1000 hours102%101%99%
2000 hours99%95%86%
XK2340   
500 hours84%104%52%
1000 hours82%108%49%
2000 hours76%106%43%
Thermal Aging at 200°C   
Ryton® PPS Compound 
Hours at 392°F (200°C)
Tensile 
Strength 
Retained
Flexural 
Modulus 
Retained
Impact 
Strength 
Retained
R-4-200BL   
500 hours85%104%67%
1000 hours81%107%66%
2000 hours74%104%56%
R-4-200NA   
2000 hours76%105%54%
XK2340   
2000 hours46%110%21%
XE5030BL   
2000 hours77%112%39%
XE4050BL   
2000 hours81%119%37%
Thermal Aging at 220°C   
Ryton® PPS Compound 
Hours at 428°F (220°C)
Tensile 
Strength 
Retained
Tensile 
Modulus 
Retained
Impact 
Strength 
Retained
R-4-200BL   
500 hours80%107%-----
1000 hours79%107%-----
3000 hours72%94%-----
R-4-220BL   
500 hours82%109%-----
1000 hours77%98%-----
3000 hours76%97%-----
XE5030BL   
500 hours82%103%45%
1000 hours82%106%43%
2000 hours80%108%40%
3000 hours77%109%37%
XE4050BL   
500 hours88%105%46%
1000 hours89%108%46%
2000 hours89%113%41%
3000 hours87%114%46%
Thermal Aging at 240°C   
Ryton® PPS Compound 
Hours at 464°F (240°C)
Tensile 
Strength 
Retained
Flexural 
Modulus 
Retained
Impact 
Strength 
Retained
R-4-200BL   
504 hours75%113%58%
1002 hours75%114%51%
2112 hours69%122%51%
2994 hours65%125%41%
BR111   
504 hours89%103%57%
1002 hours85%100%52%
2112 hours83%110%53%
2994 hours78%114%48%

Although exposure to UV light and weathering may cause some surface degradation and erosion, the mechanical properties of Ryton® PPS will be relatively unaffected.

Although exposure of Ryton® PPS to UV light may cause some surface degradation and erosion, the properties of the bulk material generally are relatively unaffected by such exposure. In the study summarized below, Ryton® R-4 PPS (which has no UV inhibitor) and Ryton® R-4 PPS with 2% carbon black as UV inhibitor were subjected to aging in an Atlas Weatherometer and suffered minimal property loss. Many Ryton® PPS compounds have been rated suitable for outdoor use with respect to UV light exposure, water exposure and water immersion in accordance with UL746C (see UL Yellow Card Listings). However, since some discoloration and attrition of surface material may occur over time with UV exposure and weathering, part surface finish should not be expected to remain unchanged over the long term.

Effects of Weatherometer Aging on Ryton® PPS Compounds   
Ryton® PPS Compound 
Hours of Exposure
Tensile 
Strength 
kpsi
ElongationSurface 
Erosion 
mm
R-4   
016.71.1 % 
200015.31.2 % 
600015.51.4 % 
800014.41.2 % 
1000010.60.6 %0.33
R-4 with 2% Carbon Black   
017.41.2 % 
200017.31.1 % 
600017.30.9 % 
800016.81.0 %0.05

Engineering Properties

Detailed engineering properties are available for commonly used Ryton® PPS compounds and Ryton® PPS Alloy compounds. These feature industry-standard test methods and typical end-use operating conditions. 

If you are unable to locate data for the test method or product required, please contact our technical experts for further assistance.

Thrust Washer Test

The dynamic coefficient of friction and wear rate of Ryton® PPS compounds has been determined using a Thrust Washer machine according to ASTM D 3702. In this test, a specimen having a ring-shaped test surface is rotated against a stationary steel washer at a specified speed and under a specified weight for a specified period of time, and the reduction in thickness of the test specimen is then measured. The dynamic coefficient of friction may also be determined from the torque on the rotating specimen during the test. These tests were performed dry, at 36 rpm (velocity 10 ft/min, 3.05 m/min), under a 50 pound (22.7 kg) test load (250 psi, 1.72 MPa).

 

Coefficient of Friction and Wear Resistance of Ryton® PPS Compounds

Ryton® PPS CompoundCountersurfaceTest DurationMaterial COFMaterial Wear RateCountersurface Wear Rate  
  hours g/hrin/hrmm/hrg/hr
R-452100 Steel (Rc 60)100.501.2 x 10-22.2 x 10-35.5 x 10-27.0 x 10-3
BR42B52100 Steel (Rc 60)1000.323.8 x 10-46.2 x 10-51.6 x 10-33.0 x 10-4
R-4-200NA1018 Steel (Rc 20)200.406.2 x 10-31.0 x 10-32.6 x 10-23.6 x 10-3
R-4-220BL1018 Steel (Rc 20)200.437.4 x 10-31.3 x 10-33.3 x 10-23.9 x 10-3
BR42B1018 Steel (Rc 20)1600.393.7 x 10-46.0 x 10-51.5 x 10-32.1 x 10-4

 

Taber Abrasion Test

The abrasion resistance of Ryton® PPS compounds has been determined using the Taber abrasion apparatus according to ASTM D 1044. In this test, a flat plaque test specimen is mounted on a turntable in contact with a weighted abrasive wheel, and after a selected number of revolutions of the wheel at constant speed, the weight loss of the specimen is determined.

Taber Abrasion Testing of Ryton® PPS Compounds       
   Weight Loss (g) After Indicated Number of Revolutions    
Ryton® PPS CompoundWheelLoad50010001500200010000
R-4CS-101 kg-----0.070---------------
R-4-02CS-101 kg-----0.040---------------
R-4-220NACS-101 kg-----0.054---------------
R-7-120NACS-101 kg-----0.064---------------
BR111CS-101 kg-----0.051---------------
BR42BCS-101 kg-----0.015---------------
XK2340CS-101 kg-----0.031---------------
R-4-200BLCS-171 kg-----0.057----------0.625
R-4-220BLCS-171 kg0.0400.0560.0660.077-----
R-7-120BLCS-171 kg0.0470.0790.1030.130-----
XE5030BLCS-171 kg-----0.055----------0.632
XE4050BLCS-171 kg-----0.107----------0.976

 

Coefficient of Friction

The coefficient of friction of 40% glass fiber reinforced PPS (Ryton® R-4 PPS) was determined using the Alpha Molykote LFW-1 friction and wear test machine. The flat block test specimens were run against a steel ring at selected speeds under a 15 pound (6.8 kg) load. There appeared to be little difference in the static and dynamic coefficient of friction.

Coefficient of Friction of 40% Glass Fiber Reinforced PPS  
 SpeedCOF
0 rpm (static)0 ft/min (0 m/min)0.50
100 rpm (dynamic)29 ft/min (8.8 m/min)0.55
190 rpm (dynamic)55 ft/min (16.8 m/min)0.53

 

Creep Charts for Ryton® PPS Compounds

XK2340 Tensile Creep

Ryton-XK2340-creep-data

 

E5030BL Tensile Creep

Ryton-XE5030BL-creep-data

 

​XE4050BL Tensile Creep

Ryton-XE4050BL-creep-data

 

R-7-220BL Tensile Creep

Ryton-R7220BL-creep-data

 

R-4 Tensile Creep

Ryton-R4-creep-data

 

R-7-120BL Tensile Creep

Ryton-R7120BL-creep-data

 

R-4-02XT Tensile Creep

Ryton-R402XT-creep-data

 

R-4-200BL Tensile Creep

Ryton-R4200BL-creep-data

 

BR42B Tensile Creep

Ryton-BR42B-creep-data

 

BR111 Tensile Creep

Ryton-BR111-creep-data

 

S / N Curves for Ryton® PPS Compounds

BR111 Flexural Fatigue

Ryton-BR111-flexural-fatigue

 

BR111 Tensile Fatigue

Ryton-BR111-tensile-fatigue

 

BR42B Flexural Fatigue

Ryton-BR42B-flexural-fatigue

 

R-4 Tensile Fatigue

Ryton-R4-tensile-fatigue

 

R-4-02XT Tensile Fatigue

Ryton-R402XT-tensile-fatigue

 

R-4-200BL Tensile Fatigue

Ryton-R4200BL-tensile-fatigue

 

R-7-120BL Tensile Fatigue

Ryton-R7120BL-tensile-fatigue

 

Mechanical Properties of Ryton® PPS Compounds at Various Temperatures

Tensile Strength

Nominal Tensile Strength of Ryton® PPS Compounds from -40°C to 200°C

Ryton® PPS Compound -40°C 

-40°F
23°C 

73°F
50°C 

122°F
75°C 

167°F
100°C 

212°F
150°C 

302°F
200°C 

392°F
R-4-200BLMPa1951801601401056545
 kpsi28262320159,56,5
R-4-220BLMPa1901751601451106550
 kpsi28252321169,57,5
R-4-230BL MPa1351301301301107045
 kpsi2019191916106,5
R-4-240BLMPa1951651501301006045
 kpsi28242219158,56,5
R-7-120BLMPa1751351201201007050
 kpsi25201717158,56,5
R-7-220BLMPa1851601501401158060
 kpsi2723222017128,5
BR111BLMPa2201901651551207555
 kpsi3228242317118.0
BR42BMPa2201901651551207555
 kpsi3228242317118.0
XE5030BLMPa16013011095754535
 kpsi23191614117.56.0
XK2340MPa2051951651401209075
 kpsi30282420171311

Test Method: ISO 527 

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.

 

Tensile Modulus

Nominal Tensile Modulus of Ryton® PPS Compounds from -40°C to 200°C

Ryton® PPS Compound -40°C 

-40°F
23°C 

73°F
50°C 

122°F
75°C 

167°F
100°C 

212°F
150°C 

302°F
200°C 

392°F
R-4-200BLGPa16141414127.05.0
 Mpsi2.42.12.12.11.81.00.7
R-4-220BLGPa15141414116.05.5
 Mpsi2.22.12.12.11.60.90.8
R-4-230BLGPa16141514117.05.5
 Mpsi2.42.12.22.11.61.00.8
R-4-240BLGPa13131313105.04.0
 Mpsi1.91.91.91.91.50.70.6
R-7-120BLGPa21191817167.06.5
 Mpsi3.12.82.62.52.41.01.0
R-7-220BLGPa17171616128.07.0
 Mpsi2.52.52.42.41.81.21.0
BR111BLGPa20212020158.57.5
 Mpsi2.93.12.92.92.21.21.1
BR42BGPa17161615127.56.0
 Mpsi2.52.42.42.21.81.10.9
XE5030BLGPa101010107.04.03.5
 Mpsi1.51.51.51.51.00.60.5
XE4050BLGPa121111107.54.03.5
 Mpsi1.81.61.61.51.10.60.5
XK2340GPa181512119.57.57.0
 Mpsi2.62.21.81.61.41.11.0

Test Method: ISO 527

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.

Stress / Strain Curves for Ryton® PPS Compounds

R-4-200BL Tensile Stress/Strain Curves

Ryton-R4200BL-tensile-stress-strain

 

R-7-120BL Tensile Stress/Strain Curves

Ryton-R7120BL-tensile-stress-strain

 

BR42B Tensile Stress/Strain Curves

Ryton-BR42B-tensile-stress-strain

 

R-4-220BL Tensile Stress/Strain Curves

Ryton-R4220BL-tensile-stress-strain

 

R-7-220BL Tensile Stress/Strain Curves

Ryton-R7220BL-tensile-stress-strain

 

BR111BL Tensile Stress/Strain Curves

Ryton-BR111BL-tensile-stress-strain

 

XE4050BL Tensile Stress/Strain Curves

Ryton-XE5030BL-tensile-stress-strain

 

XE5030BL Tensile Stress/Strain Curves

Ryton-XE5030BL-tensile-stress-strain

 

​XK2340 Tensile Stress/Strain Curves

Ryton-XK2340-tensile-stress-strain

 

​R-4-230BL Tensile Stress/Strain Curves

Ryton-R4230BL-tensile-stress-strain

 

R-4-240BL Tensile Stress/Strain Curves

Ryton-R4240BL-tensile-stress-strain

 

Weld Line Strength

Weld lines are formed during the molding process when the melt flow front divides and then flows back together. Typically, the weld line interface is resin rich because the glass fibers tend not to cross the interface. The lack of glass fiber reinforcement across the interface results in lower mechanical strength along the weld line. Gate location and fill patterns should be planned so that weld lines will be eliminated or located in areas of minimal stress whenever possible. 

If weld lines must bear stress, the part design should compensate for the typical weld line strengths indicated below. Weld line strength is highly dependent on molding conditions, so the part and tool design should allow for rapid injection, a hot flow front, and thorough packing. Gas entrapment is very detrimental to weld line strength, so molds must be designed to avoid back filling and should be adequately vented in areas where weld lines form.

Nominal Weld Line Tensile Strength of Ryton® PPS Compounds  
BR111 and BR111BL45 MPa6.5 kpsi
BR42B55 MPa8.0 kpsi
R-4 and R-4-0240 MPa6.0 kpsi
R-4-200NA and R-4-200BL60 MPa8.5 kpsi
R-4-220NA and R-4-220BL55 MPa8.0 kpsi
R-4-230NA and R-4-230BL40 MPa6.0 kpsi
R-4-240NA and R-4-240BL80 MPa11.5 kpsi
R-4XT and R-4-02XT55 MPa8.0 kpsi
R-7-120NA and R-7-120BL45 MPa6.5 kpsi
R-7-121NA and R-7-121BL40 MPa6.0 kpsi
R-7-220BL45 MPa6.5 kpsi
XE4050BL45 MPa6.5 kpsi
XE5030BL50 MPa7.5 kpsi
XE5515BL65 MPa9.5 kpsi
XK234060 MPa8.5 kpsi

Test Method: ISO 527, double end gated specimens

Test Specimen Molding Conditions: Melt Temperature 315-343°C (600-650°F); Mold Temperature 135°C (275°F)

THE NOMINAL PROPERTIES REPORTED HEREIN ARE TYPICAL OF THE PRODUCTS BUT DO NOT REFLECT NORMAL TESTING VARIANCES AND THEREFORE SHOULD NOT BE USED FOR SPECIFICATION PURPOSES.